Ambient temperature-mediated changes in hepatic gene expression of a mammalian herbivore (Neotoma lepida).

نویسندگان

  • Patrice Kurnath Connors
  • Jael R Malenke
  • M Denise Dearing
چکیده

Herbivores regularly ingest natural toxins produced by plants as a defence against herbivory. Recent work suggests that compound toxicity is exacerbated at higher ambient temperatures. This phenomenon, known as temperature-dependent toxicity (TDT), is the likely result of decreased liver function at warmer temperatures; however, the underlying cause of TDT remains speculative. In the present study, we compared the effects of temperature and dietary plant toxins on differential gene expression in the liver of an herbivorous rodent (Neotoma lepida), using species-specific microarrays. Expression profiles revealed a greater number of differentially expressed genes at an ambient temperature below the thermal neutral zone for N. lepida (22°C) compared to one within (27°C). Genes and pathways upregulated at 22°C were related to growth and biosynthesis, whereas those upregulated at 27°C were associated with gluconeogenesis, apoptosis and protein misfolding, suggestive of a stressed state for the liver. Additionally, few genes associated with xenobiotic metabolism were induced when woodrats ingested plant toxins compared to nontoxic diets, regardless of temperature. Taken together, the results highlight the important role of ambient temperature on gene expression profiles in the desert woodrat. Temperatures just below the thermal neutral zone might be a favourable state for liver metabolism. Furthermore, the reduction in the number of genes expressed at a temperature within the thermal neutral zone indicates that liver function may be reduced at temperatures that are not typically considered as thermally stressful. Understanding how herbivorous mammals will respond to ambient temperature is imperative to accurately predict the impacts of climate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warmer ambient temperatures depress liver function in a mammalian herbivore.

Diet selection in mammalian herbivores is thought to be mainly influenced by intrinsic factors such as nutrients and plant secondary compounds, yet extrinsic factors like ambient temperature may also play a role. In particular, warmer ambient temperatures could enhance the toxicity of plant defence compounds through decreased liver metabolism of herbivores. Temperature-dependent toxicity has be...

متن کامل

The draft genome sequence and annotation of the desert woodrat Neotoma lepida

We present the de novo draft genome sequence for a vertebrate mammalian herbivore, the desert woodrat (Neotoma lepida). This species is of ecological and evolutionary interest with respect to ingestion, microbial detoxification and hepatic metabolism of toxic plant secondary compounds from the highly toxic creosote bush (Larrea tridentata) and the juniper shrub (Juniperus monosperma). The draft...

متن کامل

Ambient temperature influences tolerance to plant secondary compounds in a mammalian herbivore.

Growing evidence suggests that plant secondary compounds (PSCs) ingested by mammals become more toxic at elevated ambient temperatures, a phenomenon known as temperature-dependent toxicity. We investigated temperature-dependent toxicity in the desert woodrat (Neotoma lepida), a herbivorous rodent that naturally encounters PSCs in creosote bush (Larrea tridentata), which is a major component of ...

متن کامل

Cytochrome P450 2B Diversity and Dietary Novelty in the Herbivorous, Desert Woodrat (Neotoma lepida)

Detoxification enzymes play a key role in plant-herbivore interactions, contributing to the on-going evolution of ecosystem functional diversity. Mammalian detoxification systems have been well studied by the medical and pharmacological industries to understand human drug metabolism; however, little is known of the mechanisms employed by wild herbivores to metabolize toxic plant secondary compo...

متن کامل

The effect of Holocene temperature fluctuations on the evolution and ecology of Neotoma (woodrats) in Idaho and northwestern Utah

Animals respond to climatic change by adapting or by altering distributional patterns. How an animal responds is influenced by where it is positioned within its geographic range; the probability of extirpation is increased near range boundaries. Here, we examine the impact of Holocene climatic fluctuations on a small mammalian herbivore, the bushy-tailed woodrat (Neotoma cinerea), at five locat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular ecology

دوره 26 16  شماره 

صفحات  -

تاریخ انتشار 2017